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De Sitter Quasigroups
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The Cayley—Klein parameters for the de Sitter grogS(4, 1) andSO(3, 2) are
introduced, and in an extension of the earlier investigation of quasigroups connected
with Clifford groups, quasigroups connected with 81€(4, 1) andS O(3, 2) groups are
determined. It is shown that these quasigroups have eight-dimensional, double-valued
irreducible cracovian representations. The covariance of a five-dimensional form of the
Dirac equation with respect to the quasi-rotations forming quasigroups connected with
the groupsS O(4, 1) andS O(3, 2) is demonstrated. An analogy is drawn between Weyl's
hidden symmetry group and a quasigroup.

1. INTRODUCTION

The investigations of quasigroups in the mathematical literature (@haln
1990; Pflugfelder, 1990; Sabinin, 1999) have a counterpart in physics in the at-
tempts of applying nonassociative algebras in quantum mechanics, which were
initiated by Jordan (1932) and Jordeinal. (1934) and continued in the papers by
Segal (1947) and Sherman (1956) and extended on elementary particle physics by
Gursey (1979). A survey of papers on honassociative geometry with the reference
to space-time was recently presented by Sabinin (2001). The line of thought of that
survey was pursued by Shitneva (2001) in an application of nonassociative geo-
metry to special relativity. Nonassociative gauge theory is the subject of a recent
paper by Nesterov (2001).

Inan earlier paper onthis subject (KnsKi, 2001) a certain type of quasigroup
connected with Clifford groups was defined. In Clifford groups generated by
elementss, y», ..., yn for N =1, 2,.. ., which fulfil the condition

YuVo + V¥ =280 w,v=12,...,N (1)

two group automorphisms were considered: (1) the involution operatide-
fined by

I(Vu) = —Vu L(l (yu)) = Yus [(£1)=+1
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Lure -+ ve) = (o) - 1)1 (V) )
Vi Vor -1 Ve €6
and (2) the automorphism defined by the equality
I(ya)ys = yc, forafixedya (3)
where, for brevityya, ys, andyc denote arbitrary elements of the Clifford group,
i.e. also arbitrary products of the elememts o« = 1, 2,..., N, where for any

YA = YaVB - Vo WE haveyA_1 = ¥, - - - VYo With the notation

V/Lyu Ve = V/w---zr (4)
the following product was defined:

(y/w»--o*) . (Venmp) =1 (Vem-p)y/wmo (5)

where the product on the right-hand side is the associative product in Clifford
groups. Witha, b, andc denoting threg’-symbols undergoing the “dot” product
in Eq. (5) it was found that

(a@a-b)y-c=a-(c-th) (6)

wherer denotes the right unit element. The symboéplaces the symbdlwhich
in Kocihski (2001) denotes the right unit element in the defined particular type of
guasigroups.

These quasigroups, which were called nonassociative groups, have represen-
tations. They are analogous to the matrix representations of groups provided that the
“row-by-column” multiplication of two matrices is replaced by the “column-by-
column” product. This type of product of matrices was introduced by Banachiewicz
(1929, 1937, 1938, 1959), and matrices undergoing the “column-by-column” mul-
tiplication were called by him “cracovians.” The cracovian algebra was presented
by Sierpriski (1951). The nonassociative group of quasi-rotations connected with
rotations belonging to the proper orthochronous Lorentz group was defined and
a four-dimensional, double-valued irreducible cracovian representation of that
quasigroup was determined (KaskKi, 2001). That investigation will now be ex-
tended to quasigroups connected with two five-dimensional, pseudo-orthogonal
rotation groups, i.e. to the de Sitter group&X(4, 1) andS (3, 2). These groups
were investigated by a number of authors. The references to papers concerning the
pseudo-orthogonal rotation groups and their contractions may be found in Philips
and Wigner (1968). These authors discuss various properties of the de Sitter groups,
the physical interpretation of the grouy(4, 1), and, in particular, the question
how the positive nature of energy can be incorporated into that interpretation. The
relation of theS O(4, 1) group with the respective Clifford group algebra was in-
vestigated by @Gisey (1964). He determined the irreducible representation (irrep)
of the groupS O(4, 1) depending on the 10 rotation angles. The question of the
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Cayley—Klein parameters of the de Sitter grod®3(4, 1) andS (3, 2) was not
considered in the literature of the subject.

We will extend the investigation of @Sey (1964) by determining in Section 2
the Cayley—Klein parameters for tf®0(4, 1) andSO(3, 2) groups. In this we
will follow the method of Sommerfeld (1944), who derived the Cayley—Klein
parameters for rotations in the Minkowski space. The motivation behind this part
of the paper is that the earlier applied method (Ikski, 2001) of determination
of a double-valued cracovian irrep of quasigroup depends on the knowledge of
the Cayley—Klein parameters of the proper orthochronous Lorentz rotations. The
extension of that mode of reasoning to the quasigroups connected with the de
Sitter groups therefore hinges on the knowledge of the respective Cayley—Klein
parameters.

In Section 3 we determine the quasigroups of quasi-rotations connected with
the rotation groupsSO(4, 1) andSQ(3, 2), and in Section 4 we calculate the
eight-dimensional, double-valued cracovian irreps of these quasigroups. These
are analogous to the four-dimensional, double-valued cracovian irrep of the quasi-
group of quasi-rotations connected with the proper orthochronous Lorentz group
(Kocinski, 2001).

In Section 5 the covariance of a five-dimensional form of the Dirac equation
under the quasi-rotations belonging to the quasigroups connected wald({de1)
and SQ(3, 2) groups, respectively, is demonstrated. This also means the covari-
ance of the Dirac equation under the quasi-rotations belonging to the quasigroup
connected with the proper orthochronous Lorentz group.

In Sectio 6 a tentative analogy is drawn between Weyl's hidden symmetry
group of an object (Weyl, 1952) and a quasigroup connected with a group. The
symmetry group of the Dirac equation is discussed in this respect.

2. CAYLEY-KLEIN PARAMETERS OF
FIVE-DIMENSIONAL ROTATIONS

In the description of rotations in pseudo-orthogonal spaces of metric signa-
tures (4, 1) or (3, 2), i.e. of four real and one imaginary or three real and two
imaginary dimensions, we will utilize the Clifford group algebra, generated by
the elements, y», y3, andy, which obey the defining condition in Eq. (1) with
w,v=1,2, 3, 4. Introducing the fifth elemept = y1y>y3y4, which also fulfils
Eqg. (1), we can say that the five elemepntsy», ys, v4, andys generate the Clifford
group algebra relative to the pseudo-Euclidean sp&¢és1) or E(3, 2). To the
elements, ..., ys the orthogonal axes,, . . ., Xs, respectively, can be attached.
We follow Sommerfeld (1944) and write a vector in five-dimensional, pseudo-
orthogonal space in the form

X = XuYu (7)
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where the coordinates, x,, X3 are real x4 = ict, with ¢ denoting the speed of
light in the vacuum antidenoting time, and thes coordinate is real or imaginary
in E(4, 1) orE(3, 2) space, respectively. For the products of fwelements we
introduce the notation

def
Vuyvze)’;wz_)/u,; wv=1...,5 (8)

Rotations of a four-vector in Minkowski space, with= ict, were expressed
by Sommerfeld (1944) by the Cayley—Klein parameters in the form

-,

X=X =5 (XaVe) S 9)
with the biquaternion
S = Ayaz+ Bysi+ Cyio+ D 4+ ayia + bysa + Cyza — dys (10)
and the inverse biquaternion
St = —Ayzs — Bysi — Cy12+ D — ayis — byss — Cyaa — dys (11)

where the Cayley—Klein parameteks B, C, andD are real ana, b, ¢, andd are
imaginary. We hav&s §;* = S S = 1 on the two conditions

A2+ B2+ C2+D?+a?2+b?+c2+d?=1 (12)
Aa+ Bb+Cc+Dd=0 (13)

Equations (9)—(11) for rotations in the Minkowski space can be extended on
five-dimensional rotations ik, ; and E;  spaces. We will demonstrate that they
are determined by the formula

X' =X, 7. = St6 (Xu 1) Sio (14)
where
Sie = S+ Uyis + Vyas + Wyss+ Zyas —Uyr —Vyo —Wys —zys - (15)
and
Sie =S — Uyis — Vyos — Wyss — Zyas —Uyr — Vyo — Wys — zys - (16)

with the transformationSg and%l given in Egs. (10) and (11), whetg, V, W,
Z andu, v, w, z are parameters. From the condition

SeSe=1 (17)
there follow six conditions for the 16 parameters appearing in Egs. (15) and (16):
A2+ BZ+C2+D2+a2+b2+CZ+d2+U2
+ V2 W2+ Z2 P vi4w? 422 =1 (18)
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Aa+ Bb+Cc+Dd+Uu+Vv+Ww+Z2z=0 (19)
AZ+BW-CV+DU —-az—bw+cv—du=0 (20)
AW-BZ-CU-DV —aw+bz+cu+dv=0 (21)
AV-BU+CZ+DW-—-av+bu—cz—dw=0 (22)
Au+Bv+Cw—Dz—aU—-bV-cW+dzZz=0 (23)

Equations (19)—(23) represent a system of five linear inhomogeneous equations
for the five parameterd, U, V, W, andz in terms of the parametei&, B, C,

a, b, c u,v,w, Z andD. The determinantA of this system of equations is
equal to

A = D[D¥D?+ A%+ B2+ C2 +a® + b2 + 2 + u2 +- V2 + w? + Z2)
+ (Aa+ Bb+ Cc)?+ (AZ — bw + cv)?
+ (CZ —av+bu)® + (Au+ Bv + Cw)? (24)

It can be shown that this determinant cannot vanish if Egs. (19)—(23) are fulfilled.
The parameters, U, V, W, andz therefore are uniquely determined by these five
equations. The parametBrthen is determined from Eq. (18).

We notice that the inverse transformat'@g1 in Eq. (16) is obtained frorg
in Eqg. (15) by reversing the signs of the 10 rotational paramefe8; C, a, b, c, u,
v, w, Z. Consequently, if instead of Eq. (17) the condit&esl? = 1 were used,
we again would have obtained the six conditions in Egs. (18)—(23), in which the
above 10 parameters would have appeared with reversed signs. The determinants
of the matrices connected with the transformati@sand S;;- are equal to 1
for both sets of the six conditions. By analogy with rotations in Minkowski space
we assume that foE, ; space, which is Minkowski space extended by one real
dimension, we hava, v, w real andZ imaginary. We now turn to Eq. (19). Its first
four terms are imaginary, sino®, B, C, D are real and, b, c, d are imaginary.
Consequently, the remaining four terms also must be imaginary, since otherwise
Eqg. (19) would splitinto two conditions and this is unacceptable as the total number
of conditions cannot exceed six. Therefore,ifs, w are real and is imaginary,
thenU, V, W have to be imaginary andhas to be real, and vice versa. We thus
conclude that in the case &4 ; space we have

LV, W, Z real

u
U,V,W, Z imaginary (25)
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and forEjs » space

u,v,w,z imaginary

U,V,W, Z real (26)

It can be verified that the product of two transformations of the t8pe
yields another transformation of that type, i.e. with the resultant parameters ful-
filling Egs. (18)—(23). The identity transformation is obtained wiitk= 1 and the
remaining 15 parameters equal to zero. The transformaSgytherefore consti-
tute a continuous group depending on 10 independent parameters. The irreducible
four-dimensional matrix form of the transformati®@gs was given by Koaiski
(2000).

To show that Eq. (14) determines a rotation it suffices to verify i}t & X2
with the help of Egs. (14) and (18)—(23). The 16 parameters appearing in the
transformatiors g can therefore be called the Cayley—Klein parameters of the de
Sitter groupsS (4, 1) andS Q(3, 2).

We observe that the existence of a four-dimensional irrep of the five-
dimensional rotations group was already pointed out by Pauli (1933) in connec-
tion with his investigations on the unification of gravity and electromagnetism in
a five-dimensional projective space of real coordinates.

It can be demonstrated that there exists a two-to-one homomorphism between
the groupSs and the group$ O(4, 1) andS O(3, 2), with the sets of parameters
in Egs. (25) and (26), respectively. The respective proof is exactly analogous to
that of Wigner (1959), concerning the grouds)(2, C) andS O(3).

We are dealing with four-dimensional, double-valued irr€pof the groups
SQO(4,1)andS (3, 2), expressed in terms of the respective Cayley—Klein parame-
ters. In the Minkowski subspace the matix reduces to the block-diagonal form
with two SL(2, C) matrices along the diagonal. For three-dimensional rotations,
ie.witha=b=c=d=u=v=w=z=U =V =W = Z =0, the matrix
S reduces to the block-diagonal form with tw&U(2, C) matrices along the
diagonal.

3. QUASI-ROTATIONS IN FIVE DIMENSIONS

From Egs. (14)—(16) we determine the following expressions for the change
of components of a five-vector under rotationds); and Ez , spaces:

X; = (A*—B*-C?+D?*-a?+b?+c?—d?
+UZ-VZ_W2 4+ 222+ vi+w? - 2)x
+ 2(AB— CD — ab+cd+ UV +WZ— uv — w2)x;
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+ 2(AC+BD —ac—bd + UW—VZ—uw + v2)x3
+2(Ad—Da—-Bc+Ch+Uz+Vw—Wv—Zu)x4
+2(Cv— Az— Bw—Du+azZ+bW-cV +dU)xs

2(AB+CD—ab—cd+ UV —-WZ—uv+w2x;
+(D2—A2+BZ—C2+aZ—bZ+C2—d2
+Z22-U24 V2 W22 —v2+w? — ),
+2BC—-AD+ ad — bc+ UZ+ VW — uz— vw)xg
+2(Ac+Bd—Ca—Db—-—Uw+Vz+Wu+ Zv)x4
+2(AwW—-Bz—Cu—Dv—-aW+bzZ+cU +dV)xs

2(AC—BD —ac+ bd+UW+ VZ—uw — v2)x;
+2(BC+ AD — ad — bc — UZ+ VW+ uz— vw)x,
+(D?2- A2 —B%24+C?+a’+b?>—c?—d?
+22-U2 - V24 W2+ U2 +v2—w? — 2)xs
+2(Ba— Ab+ Dc—Cd—-—Uv+Vu+Wz— Zw)xq
+2(Bu— Av+Cz+ Dw —aV 4+ bU + ¢cZ 4+ dW)xs

2(Da— Ad—Bc+Cb+Uz—Vw+Wv— Zu)x;
+2(Ac— Bd—-Ca+Db+Uw+Vz—Wu— Zv)x,
+2(Ba— Ab—Cd+ Dc—Uv+Vu+Wz— Zw)xs
+(A24+B?+C24+D?—-a?—b?>—c?—d?

+UP Vi w2+ 22 —UZ - V2 W2 - Z%)x,
+2(AU 4+ BV+ CW—DZ — au — bv — cw + d2)xs

2(Cv+ Az— Bw+ Du+aZ—-bW+cV +dU)x;
+2(Aw+ Bz—Cu+ Dv+aW+bZ—cU +dV)x,
+2(Bu— Av+Cz+ Dw —aV + bU + ¢cZ 4+ dW)x3
+2(DZ—- AU —-BV—CW—au—hv—cw+dzx,

237
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+(A2+ B2+ C2+ D?+a?+b?>+c2+d?
—U?2-V2-_W2_ 2722 v —w? - P)xs (31)

The parameter#, B, C, D are real, the parameteasb, c, d are imaginary, and
each of the two tetradg, V, W, Z andu, v, w, z is either real or imaginary,
according to Egs. (25) and (26).

The five-dimensional rotations can be written in the matrix form

Xr/n = Am Xm (32)
The respective cracovian form is
X¢ =X T Ac = X Pe (33)

The column matrices,, andxy, in Eq. (32) are identical with the column cracovians

x; andx; in Eq. (33), wherel' denotes the “transpose” cracovian, and the square
matrix An, in Eq. (32) is identical with the square cracovidg in Eq. (33). The

lower indices m and c distinguish square or column tables undergoing the matrix
product from those undergoing the cracovian product. The cracdiamay, for
brevity, be called a quasi-rotation cracovian, since it represents the nonassociative
transformations connected with the five-dimensional rotations. The elements of
the cracoviarP; are defined in Egs. (32) and (33).

4. DOUBLE-VALUED CRACOVIAN REPRESENTATIONS
OF THE QUASI-ROTATIONS

We will determine double-valued, eight-dimensional cracovian irreps of the
quasi-rotation$?. connected with th& O(3, 2) andS O(4, 1) groups. The method
of calculation is analogous to that applied in the determination of a double-valued
cracovian irrep of the guasi-rotations connected with the proper orhochronous
Lorentz group (Koaiski, 2001). We firstly consider the nonassociative sedenion
group. They-symbols in the dot product on the left-hand side of Eq. (5) will
be written with a caret, which means th#,(...) - (ve,..,) Will be replaced by
(Puv--o) - (Fen--p)- The respective nonassociative Clifford algebra has the basis
consisting of the right identity, the generatorg,; © =1, ..., 4, fulfilling the
conditiony,, - ¥ + Pv - Yu = —218,,, 1, v =1, 2, 3, 4, and all linearly indepen-
dent products of these generators. The dimension of this algebta(io2inski,
2001). The Cayley table of the nonassociative sedenion group is given in
Table I.

The nonassociative sedenion group has a four-dimensional cracovian irrep
which is identical with the respective matrix irrep of the sedenion group. It also
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Table I. Multiplication Table of the Nonassociative Sedenion Grbup

r 23 31 12 14 24 34 5 15 25 35 45 1 2 3 4
|t 32 13 21 41 42 43 5 15 25 35 45-1 -2 -3 -4
23| 23 = 21 31 -5 43 24 41 -4 35 -25 1 45 -3 2 -15
31| 31 12 < 32 34 -5 41 42 -35 -4 15 2 3 45 -1 -25
12| 12 13 23 ¢ 42 14 -5 43 25 -15 -4 3 -2 1 45 -35
14| 14 -5 43 24 < 21 31 32 45 -3 2 -15 -4 35 -25 1
241 24 34 -5 41 12 < 32 13 3 45 -1 -25 -35 -4 15 2
34| 34 42 14 -5 13 23 =t 21 -2 1 45-35 25 -15 -4 3
5 5 14 24 34 23 31 12« 1 2 3 4 —-15 -25 -35 —45
15| 15 4 -35 25 45 -3 2 -1 —tv 12 183 14 -5 43 24 32
25| 25 35 4 -15 3 45 -1 -2 21 —v 23 24 34 -5 41 13
35| 35 -25 15 4 -2 1 45 -3 31 32 -t 34 42 14 -5 21
451 45 -1 -2 -3 -15 -25 -35 -4 41 42 43 —r 23 31 12 -5
1 1 45 -3 2 4 -35 25-15 -5 43 24 32 -t 12 13 14
2 3 45 -1 35 4 -15 -25 34 -5 41 13 21 —r 23 24
3 -2 1 45 -25 15 4-35 42 14 -5 21 31 32 -t 34
4 -15 =256 -35 -1 -2 -3 -45 23 31 12 -5 41 42 43 —r

A wWN

*Herer denotes the right unit element and numbers denote the indices of the respesyimeils.
We havey,, = =P, o # v, n,v=1,2,3,4,and/s = psu, w =1, 2, 3, 4.

has, however, an eight-dimensional cracovian irrep of the form

010 0| 000 O 00-1 0|00 0 O
~100 0| 000 O 00 0-1/00 0 0
000 —1| 000 O 10 0 oloo o o
. 001 o| ooo o] . 01 0 000 0 0
¥3=1"500 of 010 o =00 0 ooo-1 of ¥
000 0/-100 0 00 0 000 0-1
000 0| 000 -1 00 0 0/10 0 O
000 ol 001 O 00 0 olo1 0 O
00 01| 00 00 010 0|0 0 00
00 —10| 00 00 —~100 0/0 0 00
01 00/ 00 00 000-1|0 0 00
. ~10 00| o0 oo| . 001 0l0 0 00
"2=1"50 ool 00 01 =) 000 ofo—1 oo
00 00| 00 -10 000 0|1 0 00
00 00/ 01 00 000 0ol0 0 01
00 00/—-10 00 000 0/0 0-10
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Vo4 =

Vs =

Vas =

00-1 Of 0O 000
00 O0-1f O 000
10 0 0O 0 o000
01 O Of 0 o000
00 0O O 0 010
00 O O 0 o001
00 O Of—-1 000
00 0O O O0-100
10000 0 0 O O
01000 O 0 O O
00100 0 0 O O
0001 0 O O O
0000)-12 0 O O
0000} 0-1 O O
0000f O 0-1 O
0000f O O 0-1
0 00 Oi 00 O
0 00 0O/0-i0O O
0 00 OO0 0Oi O
0O 00 0OJ0O 00 —i
i 00 0|0 00 O
0-i0 0/0 00 O
0 O0i 0|0 00 O
0 00-i|O 00 O
000 O0J]0 O -iO
000 O0JO O Oi
000 O]i 0 00
000 O0J0 —i 00
00i 0|0 0 00
000 —-i|O O 00
—i00 0|0 0 OO0
0i0 0|0 0 00

Vaa =

Y15 =

Vs =

Y1 =

Kocihski

00 0110 00 O
00 -10/0 00 O
01 00/0 00 O
—-10 00/0 00 O
00 00/0 00-1 (36)
00 000 01 O
00 000 -10 O
00 00/j1 00 O
0 0 0O OO0 O O0-i
0 00 OO0 O0-i O
0 00 OO0O—-i O O
0 00 O-i O O O
0 0 0-i|] OO OO
0 0-i 0] O O 0 O
0-i 0 00O 0 0 O
-i 0 0 0/ 0 0 0 O
(37)
00 O Ol0i O O
00 0 0Ofi0O O O
00 O 000 O-—i
00 0O Oj00—-i O
0i 0 0Jj00 O O (38)
i0o 0O 0j00O O O
00 0-i|0OO0O O O
00—-i 0|00 O O
0000f O O O —i
0000f 0 0 —-i O
0000l 0 —-i O O
0000[—-i O O O
000i| O 0O O O (39)
00i0l O 0O O O
0i0o0l O 0O O O
io0o0f 0 0 0 O
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00 00li 00 O 0 000/0i 0 O
00 00[0 —i0 O o ooolio 0 o
00 oolo oi o 0o oo0o0loo 0 —i
. 00 oolo 00 —i| . 0o o000l00 —i o0
72=1"To oolo 00 o =)0 —fooloo o of
0oi oolo 00 O —i o0o00lo0 0 o0
00 —iolo 00 O 0 oo0iloo o o
00 oilo 00 o 0 oioloo o o
0 0 000 0—iO
0 0 000 0 O
o o ooli 0 00
. 0 0 000 - 00
=10 0 -i0j0 0 00 (41)
0 0 0il0 0 00
i 0 o00lo 0 o0
0 —-i o0olo 0 o0

Here and in the following we use wavy brackets for cracovian tables to distinguish
them from matrix tables.

It suffices to prove the irreducibility of this cracovian representation into
two four-dimensional cracovian representations. If it is reducible then only to this
form, since the four-dimensional cracovian representation of the nonassociative
biguaternion subgroup of the nonassociative sedenion group has already been
proved to be irreducible (Kongki, 2001).

Firstly, we observe that the condition that any similarity transformagon
of a cracovian representation has to preserve the Cayley table of the respective
nonassociative grou@’, namely

(S TA-SY.(S-TB-S})=S.T(A-B)-S* (42)

for any A and B belonging to the nonassociative gro@®j, leads to the two
conditions

S-B-S'=s!'.B.S and S:TB-S'=5!.TB.S (43)

for any cracoviarB belonging to the nonassociative gra@fy from which follows
that

st=s (44)

for any cracovian similarity transformatiddwhich preserves the Cayley table.
Secondly, we observe that from the definition of the nonassociative pro-

duct in Eqg. (5) it follows that every matrix representation of a group at the same

time is a cracovian representation of the respective nonassociative group and vice
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versa. A matrix irrep turns into a cracovian irrep; however, a cracovian irrep
can turn into a reducible matrix representation. An example of such a situation
was given (Koanski, 2001). If the eight-dimensional cracovian representation
Q16 Were reducible to two four-dimensional representations, the respective two
diagonal blocks would at the same time belong to a matrix representation of the
sedenion group. The sedenion group has only one four-dimensional matrix irrep.
A further transformation of the block-diagonal form of the cracovigng then
would turn the blocks into a particular standard form of the four-dimensional
matrix representation. WitB denoting the resultant similarity transformation we
therefore can write

S-TC(m) - S=C'(7) (45)

where C(y,) denotes the original eight-dimensional cracovian &i,) the
block-diagonal cracovian, whose four-dimensional table is identical with the
matrix table representing, in the chosen matrix representation of the sedenion
group. Assume that the four-dimensional matrix irrep of the sedenion group is that
in Flugge (1964) or Gross (1993). It then can be shown that a similarity transfor-
mation Sfulfilling Eq. (45) does not exist. This means that the eight-dimensional
cracovian representatidsg is irreducible.

We can now determine a double-valued, eight-dimensional cracovian irrep
of each of the nonassociative groups of quasi-rotatyia Eq. (33), in (3+ 2)-
and (4+ 1)-dimensional pseudo-orthogonal spaces.

In (3+ 2) dimensions we introduce the nonassociative sedenion transforma-
tion

Q(3,2)= Apoz+ Bysy + Cpia+ Dt + apia + byos + Cy3a + dys
—iUp1s — VY25 — iWpss + ZPas + Uy + Vy2 + Wys —izy,
(46)

where, for convenience, the parameters, w, z as well as the parametdss V,
W, Z now are real. This means that we have replaced the imaginary parameters
v,w,zinEq. (26) byiu,iv,iw,iz, respectively, withreal, v,w, z. The parameters
A, B, C, D are real and the parametexs, c, d are imaginary according to their
primary definition in Eq. (10).

In (4 + 1) dimensions, shifting in Eq. (46) fromu, v, w, ztoU, V, W, Z,
and at the same time reversing the signs,of, w, z, U, V, W, Z, we obtain from
Eq. (46) the following transformation:

Q(4,1)= Apoz+ Bys1+ Cpio+ Dt + apra + bjoa + Cpaa+ djs
+ Up1s + Vs +Wyss — i ZPs5 — iU p1 — iV 2 — IW s + 27y
(47)
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Introducing for theyy,, andy, the cracovian irre;6 in Egs. (34)—(41) we
obtain the respective cracovian forms of these nonassociative transformations.
In (3 + 2) dimensions we have

QB.2)

(D+d) (A+a) —(B+b) (C+0) (V+v) (i(W+w) —@(Z+2) —(U+u)
—(A+a) (D+d) —(C+c) —(B+b) (iW+w) —(iV+v) —({U+u) (Z+2
(B+b) (C+c) (D+d) —(A+a) (Z+2) —(U+u) (V+v)—(iW+w)
—(C+¢) (B+b) (A+a) (D+d)—(@{U+u) —(Z+2) —(W+w) —(@iV +v)
—(@iV —-v) -(iW-w) (iz-2 ({U-u) (D-d) (A-a) —(B-b) (C-0)
—(iw-w) ({V-v) ({U-u)—-(z-2 —(A-a) (D-d) —(C-c) —(B-b)
—(iz-2 (U-u)—-(V-v) i(W-w) (B-b) (C-c) (D-d) —-(A-3a)
(iU-u) (z-2 (W-w) (iV-v) —(C-c) (B-b) (A-a) (D-d)

(48)

with the inverse cracovia® (3, 2) in the form

Q32

(D+d) (A+a) —(B+b) (C+c) =@V +v) —({W+w) (Z+2 (U-+u)
—(A+a) (D+d) —(C+c) —(B+b) —(iW+w) (@(V+v) (U+u)—-(Z+2
(B+b) (C+c) (D+d) —(A+a) —(Z+2 (U +u) -GV +v) (iW+w)
—(C+c) (B+b) (A+a) (D+d) (@(U+u) (Z+2 (W+w) (@(V+V)
@iv-v) ((W-w) —(iz-2 —(@{iUu—-u) (D-d) (A—a) —(B—-b) (C-c)
(iW—-w) —(iV-v) —(iu—-u) (Zz-2 —-(A-a) (D-d) —(C-c) —(B-D)
(iZz—-2) —(iU—-u) (V-v)—>{iW-w) (B-b) (C-c) (D-d) —(A-a)
—(@iU —u) —(iZ -2 —(W-w) —(iV-v) —(C-c) (B—b) (A—a) (D-d)

(49)

In (4 + 1) dimensions, shifting in Eqg. (48) fromU, V, V, Ztou, v, w, z,
respectively, we obtain the cracovian

Q4. 1)

(D+d) (A+a) —(B+b) (C+c) (V+iv) (W+iw) —(Z+iz) —(U +iu)
—(A+a) (D+d) —(C+c) —(B+b) (W+iw) —(V+iv) —(U +iu) (Z+iz)
(B+b) (C+c) (D+d) —(A+a) (Z+iz) —(U+iu) (V+iv) —=(W+iw)
—(C+0) (B+b) (A+a) (D+d)—(U+iu) —(Z+iz) —-(W+iw) —(V +iv)
—(V —iv) -(W—-iw) (Z-iz) (U—-iu) (D-d) (A-a) —(B-b) (C-0)
-(W-iw) (V—-iv) (U-iu)—(Z-iz) —(A—a) (D-d) —(C-c) —(B-b)
—(z2-iz) (U —iu) —(V—-iv) W—-iw) (B-b) (C-c) (D-d) —(A-a)
U —iu) (Z-iz) W—iw) (V—-iv) —(C—c) (B-b) (A-a) (D-d)

(50)
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whereu, v, w, z, U, V, W, Z are real. Shifting fromU, V, W, Ztou, v, w, z,
respectively, in the cracovia@ (3, 2) in Eq. (49), we obtain the inverse cracovian
Q~(4, 1). We observe that the cracovi@T(3, 2) is the inverse of the cracovian
Q(3, 2) when the conditions in Egs. (18)—(23) are applied. The same holds for the
cracoviangQ (4, 1) andQ(4, 1).

We will now show that the cracoviaig(3, 2) andQ(4, 1) yield double-valued
representations of the nonassociative groups of transformakgrefined in
Eq. (33), connected with the respective groups of rotat®®€3, 2) andS O(4, 1).

We begin with rewriting the column cracoviaq in Eqg. (33) in a square
cracovian form, to be denoted b§¢. To this end we write

Xc = X1723 + XoP31 + X3P12 + XaPs + XsVa (51)

and replace the’s by the respective cracovians in Egs. (34)—(41), thus obtaining
the eight-dimensional cracovian

Xa X1 —Xo X3 0 0 ixs 0

—X1 X4 —X3 —X 0 0 0 —iX5
Xo X3 X4 =X —iXsg 0 0 0

—X3  Xo X1 X4 0 ixs 0 0 o o

Xe = 0 0 ixs 0 = T =% s = (X, 0c) (52)

0O O 0 —ixXs —X1 —Xa —X3 —Xo

—ixs O 0 0 Xo X3 —Xs —X;
0 ixs 0 0 —X3 X2 X1 —X4

where &, Gc) denotes a scalar productf anddc = (V23, 731, Y12, Vs, 74)-
We now consider the nonassociative transformation

Q- (T Xc) ) Qﬂ< = X/c = ()_{éy ac) (53)
where Q stands for the cracovian®(3, 2) or Q(4, 1) in Egs. (48) and (50),
respectively, and wheré denotes the conjugate complex operation. It can be
verified that the coordinates, x5, X3, X, X5 calculated from Eq. (53) are those
calculated from Eq. (33). The elements of the craco¥gare equal to the elements
of the transposed tablé.; which is identical with the matrix tabld, in Eq. (32).
Consequently, the first index of the elemet of the matrix.Ay, is the column
index of the cracovian tabl€.. This means that the transformation in Eq. (33)
which carriesx; into x; = x. - P; can also be determined from Eq. (53).

We observe that in establishing this we made use of the following property of
the six conditions for the Cayley—Klein parameters in Egs. (18)—(23). These equa-
tions serve for the determination of the 6 nonrotational paramé&erds U, V,

W, zin terms of the 10 rotational paramet&sB, C, a, b, ¢, u, v, w, Z. It can be

shown that the expressions for the nonrotational parameters are polynomes of the
second degree in the rotational parameters. Consequently, these expressions are in-
dependent of the simultaneous change of sign of all the rotational parameters. This
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means that the six conditions can be applied with the same result, independently
of the reversal of sign of all the rotational parameters appearing in them.

It can be demonstrated that to the prod@gt- Q. of two transformations
of the typeQ(3, 2) or Q(4, 1) corresponds the product of the respective quasi-
rotationsP;(Q1) - Pc(Q2) = P:(Q1 - Q2). The proofis analogous to thatin the case
of quasi-rotations in the Minkowski space (KoskKi, 2001). There exists a two-
to-one homomorphism between the nonassociative groups of eight-dimensional
cracovians in Egs. (48) and (50) and the respective nonassociative groups of quasi-
rotationsP; in Eq. (33).

5. THE COVARIANCE OF THE DIRAC EQUATION

Dirac’s electron-wave equation (Dirac, 1935) in de Sitter space was investi-
gated in a number of papers. We only name the workwf@y and Lee (1963) and
the recent survey article of Halpern (2001). Dirac’s paper contains also an alterna-
tive form of his electron-wave equation in Minkowski space. This form served as
a basis for constructing a five-dimensional electron-wave equation+#nl(4 or
(3 + 2)-dimensional, pseudo-orthogonal space (Keki, 1999, 2000). The five-
dimensional equation is given by

[V;L(au - ia/t) —iysk]lu=0 (54)

witha, = (e/hc)A,, u =1, 2, 3,4, anés = my /hcoras = imy /hcfor xs real
or Xs imaginary, respectively, witly denoting a real nonelectromagnetic scalar
potential, whilex = mc/h. When Eq. (54) is delimited to the Minkowski space
(w=1, 2, 3, 4), it represents the alternative form of the Dirac equation (Dirac,
1935).

A solutionu of Eq. (54) can be referred to the basis of the sedenion algebra
without applying a matrix representation for the algebra generators (Sommerfeld,
1944). It then has the form

U = co(X) + y1C1(X) + - -+ + y172¥374C15(X) (55)

wherecy(X), ... , c15(X) are complex functions of a four-vectéir= (xy, X2, Xa,
X4) in the Minkowski subspace, or of a five-vector= (X1, X2, X3, X4, Xs) in the
two considered five-dimensional spaces.

The covariance of Eq. (54) with respect to rotations belonging toSte
(4, 1) andSQ(3, 2) groups was demonstrated in Kaski (1999, 2000). To this
end Eq. (54) was rewritten in the form

yuDu=0 (56)

withD, =9, —iQ,0orD, = p, — ia, whenxs is real orimaginary, respectively,
whereQ2, = a,, n =1,...,4, andQs = as + « for xs real, and where, = 3,
uw=1,...,4, andps = 35 — i« for x5 imaginary.
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We will now show that the five-dimensional form of the Dirac equation in
Eq. (54) or in Eg. (56) is covariant with respect to the quasi-rotations of the
guasigroups connected with the group€(4, 1) andSQ(3, 2). To this end we
rewrite Eq. (56) in the basis of the nonassociative Clifford algebra @i€bei”
2001). It then acquires the form

0-[(z7)Du] =0 (57)

where( is obtained fromu in Eq. (55) by replacing/, with 7, andco(X) by

7¢o(X), and where to avoid unnecessary brackets the dot betwaed the symbol

to the right of it has been omitted (Koaki, 2001). This means that in Eq. (57),

(z - 7,) has been replaced by,), andr - 5 has been replaced hyjs. In the
rotated coordinate system we are dealing with the “primed” quantitigs (X)) =

{(X) - TV, where agairrV stands for £ - V), and (ii) D;,. The transformatioty
depends on the 16 basis elements of the nonassomanve Clifford algebra and on the
parameters of the quasi-rotatiél in Eq. (33). In the rotated coordinate system

we thus obtain the equation

@ V) [(z7)D,1 =0 (58)

where again{ - rV)repIacesEﬂ (- V)] Multiplying this equation from the right
by V1 we obtain

@-tV)-[(z7)D]-V =0 (59)

By a repeated application of Eq. (6) and of the equal{®- b) = b- &, which is
valid for any two element& andb of the nonassociative group algebra (Kusii,
2001), this equation is transformed to the form

0- (V' [»D]-V)=0 (60)

We now return to Eq. (57) and express iit throughD;,, utilizing the cracovian
formula

Dy =D, (A" (61)

Y
with the transformatiomd. defined in Eq. (33), thus obtaining the equation
0-{(z7)D (A} =0 (62)

The comparison of Egs. (60) and (62) yields the covariance condition

V)V =) (DA, (63)
"

Utilizing on the left-hand side the relatioghBC=C - T B- T Abetween the matrix
product and the cracovian product of the three talle3, andC (Kocihski, 2001),
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and on the right-hand side the equality* = A, which is valid for the pseudo-
orthogonal rotationsi,, we can verify that Eq. (63) transforms to the customary
matrix covariance condition.

6. AHIDDEN SYMMETRY OF THE DIRAC EQUATION

Weyl (1952) introduced the notion of a “hidden” symmetry group of an object.
He considered a set with a symmetry grdapThis can be the set of all roots of
a polynom, the set of space-time points or of all nods of a crystal lattice. He
showed that essential features of a set endowed with structure can be determined
by studying the group of all automorphismait G of this set which preserve all
its structural relations. The group determines the “obvious” symmetry and the
groupAut G, the “hidden” symmetry of the set. The concept of a hidden symmetry
group was discussed from the standpoint of group actions on sets by Etakk
(1988) and Lulelet al. (1995).

In one of the examples discussed by Weyl (1952), the object is a regular
septadecagon. The property under consideration is the possibility of construction
of that regular septadecagon with the help of a compass and a ruler. The symmetry
group G of the set of vertices of a regular septadecagon is the cyclic gteup
This is the obvious geometric symmetry group of the regular septadecagon. The
vertices of a regular septadecagon are determined by the roots of the equation
Z" — 1 =0, withz = x +iy. One of the roots iz = 1, and the remaining 16 roots
are determined by an algebraic equation of degree 16. The redt determines
the starting vertex in the construction of a regular septadecagon. The determination
of the positions of the remaining 16 vertices is shown to be connected with the
group of permutations of the 16 roots of the algebraic equation of the degree 16.
This appears to be the cyclic gro@ps; henceAut C;7 = Cye. This is the hidden
symmetry group of a regular septadecagon. The possibility of construction of
a regular septadecagon with the help of a compass and a ruler hinges on the
groupCie.

In our case the object is the Dirac equation. The de Sitter gr«¥4, 1) and
SQ(3, 2), or their subgroup, i.e. the proper orthochronous Lorentz group, are the
obviousgeometric symmetry groups of that equation in a five-dimensional space
or in Minkowski space, respectively. This equation is referred to the generators of
the sedenion algebra and its solutions (cf. Eq. (55)) to the basis of that algebra.
Weyl's set endowed with a structure now is constituted by the basis elements of the
sedenion algebra. The structural condition for the algebra generators is given in
Eq. (1). This structural condition is preserved by the two groups of automorphisms
in Egs. (2) and (3). A solution in Eq. (55) of the Dirac equation is covariant with
respect to the two groups of automorphisms in Egs. (2) and (3). In turn the Dirac
equation is invariant under these automorphisms, since the four (or five,jhen
is introduced), mutually anticommuting,'s which appear in it obey the defining
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condition in Eq. (1) in their original forms as well as after the transformations in
Egs. (2) and (3). We notice that the two groups of automorphisms in Egs. (2) and
(3) correspond to the group automorphigmt C;7 = Cy¢ in the case of a regular
septadecagon. These, however, do not determine by themselves a hidden symmetry
of the Dirac equation. Further steps are required for disclosing a possible hidden
symmetry. Firstly, on the basis of those groups of automorphisms, we have to define
the nonassociative product in Eq. (5) and next to determine the nonassociative
group of quasi-rotationB; in Eq. (33). We have shown that the Dirac equation is
covariant with respect to those quasi-rotations, and it seems that the nonassociative
group of quasi-rotationB. may, perhaps, be recognized as a hidden symmetry of
the Dirac equation.

Letus suppose that the analogy holds between Weyl's hidden symmetry group
and the symmetry of the Dirac equation with respect to the nonassociative group
P.. We could then expect that some as yet undisclosed properties of the Dirac
equation might follow from that hidden symmetry. It seems that the double-valued
cracovian irrepQ(4, 1) or Q(3, 2) of the respective nonassociative groups of
guasi-rotations could be examined in this respect.

7. CONCLUSIONS

Continuing the investigations of Sommerfeld (1944) and oifsgy (1964) we
have determined the Cayley—Klein parameters for the de Sitter groups and also the
four-dimensional, double-valued irreps of those groups. These irreps represent an
analogue of th& L(2, C) double-valued irrep of the proper orthochronous Lorentz
group. These results serve as a basis of the second part of this paper, which is an
extension of the investigations of quasigroups connected with the quasi-rotations
in the Minkowski space (Koaiski, 2001). We have determined the quasi-rotations
nonassociative groups connected with the de Sitter gr8uxd, 1) andS O(3, 2).
A particular type of a quasigroup connected with the sedenion group was deter-
mined. This served as a basis for determining double-valued, eight-dimensional
cracovian irreps for those quasigroups. In the Minkowski subspace of th)3
or (4+ 1)-dimensional, pseudo-orthogonal spaces, the double-valued cracovian
irreps reduce to the double-valued cracovian irrep for the quasi-rotations con-
nected with the proper orthochronous Lorentz group (Kski, 2001). A possible
application in physics of the quasigroups investigated here may, perhaps, be sought
with the reference to the Dirac equation or to its five-dimensional form (&b,
1999, 2000). The covariance of the Dirac equation with respect to the nonas-
sociative group of quasi-rotations connected with proper orthochronous Lorentz
group, or of its five-dimensional form with respect the the nonassociative groups of
guasi-rotations connected with the de Sitter groups was demonstrated. An analogy
has been drawn between a quasigroup connected with a group and Weyl’'s hidden
symmetry group connected with the obvious symmetry group of an object. If the
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object is the Dirac equation with its obvious symmetry determined by the proper
orthochronous Lorentz group, or tB&X(4, 1) andS O(3, 2) groups in the case of its
five-dimensional extension, the respective nonassociative groups of quasi-rotations
may be the analogues of hidden symmetry groups. They may determine a hidden
symmetry of the Dirac equation. The property or properties under consideration
which depend on this hidden symmetry of the Dirac equation could be, perhaps,
some hitherto undisclosed, latent dynamical consequences, connected with the
double-valued cracovian irreps of the nonassociative groups of quasi-rotations.
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