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The Cayley–Klein parameters for the de Sitter groupsSO(4, 1) andSO(3, 2) are
introduced, and in an extension of the earlier investigation of quasigroups connected
with Clifford groups, quasigroups connected with theSO(4, 1) andSO(3, 2) groups are
determined. It is shown that these quasigroups have eight-dimensional, double-valued
irreducible cracovian representations. The covariance of a five-dimensional form of the
Dirac equation with respect to the quasi-rotations forming quasigroups connected with
the groupsSO(4, 1) andSO(3, 2) is demonstrated. An analogy is drawn between Weyl’s
hidden symmetry group and a quasigroup.

1. INTRODUCTION

The investigations of quasigroups in the mathematical literature (Cheinet al.,
1990; Pflugfelder, 1990; Sabinin, 1999) have a counterpart in physics in the at-
tempts of applying nonassociative algebras in quantum mechanics, which were
initiated by Jordan (1932) and Jordanet al.(1934) and continued in the papers by
Segal (1947) and Sherman (1956) and extended on elementary particle physics by
Gürsey (1979). A survey of papers on nonassociative geometry with the reference
to space-time was recently presented by Sabinin (2001). The line of thought of that
survey was pursued by Sbitneva (2001) in an application of nonassociative geo-
metry to special relativity. Nonassociative gauge theory is the subject of a recent
paper by Nesterov (2001).

In an earlier paper on this subject (Koci´nski, 2001) a certain type of quasigroup
connected with Clifford groups was defined. In Clifford groups generated byN
elementsγ1, γ2, . . . , γN for N = 1, 2,. . . , which fulfil the condition

γµγν + γνγµ = 2δµν µ, ν = 1, 2,. . . , N (1)

two group automorphisms were considered: (1) the involution operationI de-
fined by

I (γµ) = −γµ, I (I (γµ)) = γµ, I (±1)= ±1
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I (γµγν · · · γσ ) = I (γσ ) · · · I (γν)I (γµ), (2)

γµ, γν , . . . , γσ ∈ G

and (2) the automorphism defined by the equality

I (γA)γB = γC, for a fixedγA (3)

where, for brevity,γA, γB, andγC denote arbitrary elements of the Clifford group,
i.e. also arbitrary products of the elementsγα, α = 1, 2,. . . , N, where for any
γA = γαγβ · · · γ% we haveγ−1

A = γ% · · · γβγα. With the notation

γµγν · · · γσ ≡ γµν···σ (4)

the following product was defined:

(γµν···σ ) · (γεη···ρ) := I (γεη···ρ)γµν···σ (5)

where the product on the right-hand side is the associative product in Clifford
groups. Witha, b, andc denoting threeγ -symbols undergoing the “dot” product
in Eq. (5) it was found that

(a · b) · c = a · (c · τb) (6)

whereτ denotes the right unit element. The symbolτ replaces the symbol1̂ which
in Kociński (2001) denotes the right unit element in the defined particular type of
quasigroups.

These quasigroups, which were called nonassociative groups, have represen-
tations. They are analogous to the matrix representations of groups provided that the
“row-by-column” multiplication of two matrices is replaced by the “column-by-
column” product. This type of product of matrices was introduced by Banachiewicz
(1929, 1937, 1938, 1959), and matrices undergoing the “column-by-column” mul-
tiplication were called by him “cracovians.” The cracovian algebra was presented
by Sierpiński (1951). The nonassociative group of quasi-rotations connected with
rotations belonging to the proper orthochronous Lorentz group was defined and
a four-dimensional, double-valued irreducible cracovian representation of that
quasigroup was determined (Koci´nski, 2001). That investigation will now be ex-
tended to quasigroups connected with two five-dimensional, pseudo-orthogonal
rotation groups, i.e. to the de Sitter groupsSO(4, 1) andSO(3, 2). These groups
were investigated by a number of authors. The references to papers concerning the
pseudo-orthogonal rotation groups and their contractions may be found in Philips
and Wigner (1968). These authors discuss various properties of the de Sitter groups,
the physical interpretation of the groupO(4, 1), and, in particular, the question
how the positive nature of energy can be incorporated into that interpretation. The
relation of theSO(4, 1) group with the respective Clifford group algebra was in-
vestigated by G¨ursey (1964). He determined the irreducible representation (irrep)
of the groupSO(4, 1) depending on the 10 rotation angles. The question of the
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Cayley–Klein parameters of the de Sitter groupsSO(4, 1) andSO(3, 2) was not
considered in the literature of the subject.

We will extend the investigation of G¨ursey (1964) by determining in Section 2
the Cayley–Klein parameters for theSO(4, 1) andSO(3, 2) groups. In this we
will follow the method of Sommerfeld (1944), who derived the Cayley–Klein
parameters for rotations in the Minkowski space. The motivation behind this part
of the paper is that the earlier applied method (Koci´nski, 2001) of determination
of a double-valued cracovian irrep of quasigroup depends on the knowledge of
the Cayley–Klein parameters of the proper orthochronous Lorentz rotations. The
extension of that mode of reasoning to the quasigroups connected with the de
Sitter groups therefore hinges on the knowledge of the respective Cayley–Klein
parameters.

In Section 3 we determine the quasigroups of quasi-rotations connected with
the rotation groupsSO(4, 1) andSO(3, 2), and in Section 4 we calculate the
eight-dimensional, double-valued cracovian irreps of these quasigroups. These
are analogous to the four-dimensional, double-valued cracovian irrep of the quasi-
group of quasi-rotations connected with the proper orthochronous Lorentz group
(Kociński, 2001).

In Section 5 the covariance of a five-dimensional form of the Dirac equation
under the quasi-rotations belonging to the quasigroups connected with theSO(4, 1)
andSO(3, 2) groups, respectively, is demonstrated. This also means the covari-
ance of the Dirac equation under the quasi-rotations belonging to the quasigroup
connected with the proper orthochronous Lorentz group.

In Section 6 a tentative analogy is drawn between Weyl’s hidden symmetry
group of an object (Weyl, 1952) and a quasigroup connected with a group. The
symmetry group of the Dirac equation is discussed in this respect.

2. CAYLEY–KLEIN PARAMETERS OF
FIVE-DIMENSIONAL ROTATIONS

In the description of rotations in pseudo-orthogonal spaces of metric signa-
tures (4, 1) or (3, 2), i.e. of four real and one imaginary or three real and two
imaginary dimensions, we will utilize the Clifford group algebra, generated by
the elementsγ1, γ2, γ3, andγ4 which obey the defining condition in Eq. (1) with
µ, ν = 1, 2, 3, 4. Introducing the fifth elementγ5 = γ1γ2γ3γ4, which also fulfils
Eq. (1), we can say that the five elementsγ1, γ2, γ3, γ4, andγ5 generate the Clifford
group algebra relative to the pseudo-Euclidean spacesE(4, 1) or E(3, 2). To the
elementsγ1, . . . , γ5 the orthogonal axesx1, . . . , x5, respectively, can be attached.
We follow Sommerfeld (1944) and write a vector in five-dimensional, pseudo-
orthogonal space in the form

Ex = xµγµ (7)
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where the coordinatesx1, x2, x3 are real,x4 = ict , with c denoting the speed of
light in the vacuum andt denoting time, and thex5 coordinate is real or imaginary
in E(4, 1) or E(3, 2) space, respectively. For the products of twoγ -elements we
introduce the notation

γµγν
def= γµν = −γνµ µ, ν = 1, . . . , 5 (8)

Rotations of a four-vector in Minkowski space, withx4 = ict , were expressed
by Sommerfeld (1944) by the Cayley–Klein parameters in the form

Ex′ = x′αγα = S−1
8 (xαγα)S8 (9)

with the biquaternion

S8 = Aγ23+ Bγ31+ Cγ12+ D + aγ14+ bγ24+ cγ34− dγ5 (10)

and the inverse biquaternion

S−1
8 = −Aγ23− Bγ31− Cγ12+ D − aγ14− bγ24− cγ34− dγ5 (11)

where the Cayley–Klein parametersA, B, C, andD are real anda, b, c, andd are
imaginary. We haveS8 S−1

8 = S−1
8 S8 = 1 on the two conditions

A2+ B2+ C2+ D2+ a2+ b2+ c2+ d2 = 1 (12)

Aa+ Bb+ Cc+ Dd = 0 (13)

Equations (9)–(11) for rotations in the Minkowski space can be extended on
five-dimensional rotations inE4,1 andE3,2 spaces. We will demonstrate that they
are determined by the formula

Ex′ = x′µγµ = S16 (xµ γµ)S−1
16 (14)

where

S16 = S8+ uγ15+ vγ25+ wγ35+ Zγ45−Uγ1− Vγ2−Wγ3− zγ4 (15)

and

S−1
16 = S−1

8 − uγ15− vγ25− wγ35− Zγ45−Uγ1− Vγ2−Wγ3− zγ4 (16)

with the transformationsS8 andS−1
8 given in Eqs. (10) and (11), whereU , V , W,

Z andu, v, w, z are parameters. From the condition

S−1
16 S16 = 1 (17)

there follow six conditions for the 16 parameters appearing in Eqs. (15) and (16):

A2 + B2+ C2+ D2+ a2+ b2+ c2+ d2+U2

+ V2+W2+ Z2+ u2+ v2+ w2+ z2 = 1 (18)
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Aa+ Bb+ Cc+ Dd +Uu+ V v+Ww+ Zz= 0 (19)

AZ+ BW− CV + DU − az− bw+ cv− du= 0 (20)

AW− BZ− CU − DV − aw+ bz+ cu+ dv = 0 (21)

AV − BU + C Z+ DW − av+ bu− cz− dw = 0 (22)

Au+ Bv+ Cw− Dz− aU − bV − cW+ d Z = 0 (23)

Equations (19)–(23) represent a system of five linear inhomogeneous equations
for the five parametersd, U , V , W, andz in terms of the parametersA, B, C,
a, b, c, u, v, w, Z, and D. The determinant1 of this system of equations is
equal to

1 = D[D2(D2+ A2+ B2+ C2+ a2+ b2+ c2+ u2+ v2+ w2+ Z2)

+ (Aa+ Bb+ Cc)2+ (AZ− bw+ cv)2

+ (C Z− av+ bu)2+ (Au+ Bv+ Cw)2] (24)

It can be shown that this determinant cannot vanish if Eqs. (19)–(23) are fulfilled.
The parametersd, U , V , W, andz therefore are uniquely determined by these five
equations. The parameterD then is determined from Eq. (18).

We notice that the inverse transformationS−1
16 in Eq. (16) is obtained fromS16

in Eq. (15) by reversing the signs of the 10 rotational parameters:A, B,C,a, b, c, u,
v, w, Z. Consequently, if instead of Eq. (17) the conditionS16S−1

16 = 1 were used,
we again would have obtained the six conditions in Eqs. (18)–(23), in which the
above 10 parameters would have appeared with reversed signs. The determinants
of the matrices connected with the transformationsS16 and S−1

16 are equal to 1
for both sets of the six conditions. By analogy with rotations in Minkowski space
we assume that forE4,1 space, which is Minkowski space extended by one real
dimension, we haveu, v, w real andZ imaginary. We now turn to Eq. (19). Its first
four terms are imaginary, sinceA, B, C, D are real anda, b, c, d are imaginary.
Consequently, the remaining four terms also must be imaginary, since otherwise
Eq. (19) would split into two conditions and this is unacceptable as the total number
of conditions cannot exceed six. Therefore ifu, v, w are real andZ is imaginary,
thenU , V , W have to be imaginary andz has to be real, and vice versa. We thus
conclude that in the case ofE4,1 space we have

u, v, w, z real
U, V, W, Z imaginary

(25)
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and forE3,2 space

u, v, w, z imaginary
U, V, W, Z real

(26)

It can be verified that the product of two transformations of the typeS16

yields another transformation of that type, i.e. with the resultant parameters ful-
filling Eqs. (18)–(23). The identity transformation is obtained withD = 1 and the
remaining 15 parameters equal to zero. The transformationsS16 therefore consti-
tute a continuous group depending on 10 independent parameters. The irreducible
four-dimensional matrix form of the transformationS16 was given by Koci´nski
(2000).

To show that Eq. (14) determines a rotation it suffices to verify that (Ex′)2 = Ex2

with the help of Eqs. (14) and (18)–(23). The 16 parameters appearing in the
transformationS16 can therefore be called the Cayley–Klein parameters of the de
Sitter groupsSO(4, 1) andSO(3, 2).

We observe that the existence of a four-dimensional irrep of the five-
dimensional rotations group was already pointed out by Pauli (1933) in connec-
tion with his investigations on the unification of gravity and electromagnetism in
a five-dimensional projective space of real coordinates.

It can be demonstrated that there exists a two-to-one homomorphism between
the groupS16 and the groupsSO(4, 1) andSO(3, 2), with the sets of parameters
in Eqs. (25) and (26), respectively. The respective proof is exactly analogous to
that of Wigner (1959), concerning the groupsSU(2, C) andSO(3).

We are dealing with four-dimensional, double-valued irrepsS16 of the groups
SO(4, 1) andSO(3, 2), expressed in terms of the respective Cayley–Klein parame-
ters. In the Minkowski subspace the matrixS16 reduces to the block-diagonal form
with two SL(2, C) matrices along the diagonal. For three-dimensional rotations,
i.e. with a = b = c = d = u = v = w = z= U = V = W = Z = 0, the matrix
S16 reduces to the block-diagonal form with twoSU(2, C) matrices along the
diagonal.

3. QUASI-ROTATIONS IN FIVE DIMENSIONS

From Eqs. (14)–(16) we determine the following expressions for the change
of components of a five-vector under rotations inE4,1 andE3,2 spaces:

x′1 = (A2− B2− C2+ D2− a2+ b2+ c2− d2

+ U2− V2−W2+ Z2− u2+ v2+ w2− z2)x1

+ 2(AB− CD− ab+ cd+ UV+WZ− uv− wz)x2
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+ 2(AC+ BD− ac− bd+ UW− VZ− uw+ vz)x3

+ 2(Ad− Da− Bc+ Cb+Uz+ V w−Wv− Zu)x4

+ 2(Cv− Az− Bw− Du+ aZ+ bW− cV + dU)x5 (27)

x′2 = 2(AB+ CD− ab− cd+ UV−WZ− uv+ wz)x1

+ (D2− A2+ B2− C2+ a2− b2+ c2− d2

+ Z2−U2+ V2−W2+ u2− v2+ w2− z2)x2

+ 2(BC− AD+ ad− bc+ UZ+ VW− uz− vw)x3

+ 2(Ac+ Bd− Ca− Db−Uw + V z+Wu+ Zv)x4

+ 2(Aw− Bz− Cu− Dv − aW+ bZ+ cU + dV)x5 (28)

x′3 = 2(AC− BD− ac+ bd+ UW+ VZ− uw− vz)x1

+ 2(BC+ AD− ad− bc− UZ+ VW+ uz− vw)x2

+ (D2− A2− B2+ C2+ a2+ b2− c2− d2

+ Z2−U2− V2+W2+ u2+ v2− w2− z2)x3

+ 2(Ba− Ab+ Dc− Cd−Uv + V u+W z− Zw)x4

+ 2(Bu− Av+ Cz+ Dw − aV + bU + cZ+ dW)x5 (29)

x′4 = 2(Da− Ad− Bc+ Cb+Uz− V w+Wv− Zu)x1

+ 2(Ac− Bd− Ca+ Db+Uw + V z−Wu− Zv)x2

+ 2(Ba− Ab− Cd+ Dc−Uv + V u+W z− Zw)x3

+ (A2+ B2+ C2+ D2− a2− b2− c2− d2

+ u2+ v2+ w2+ z2−U2− V2−W2− Z2)x4

+ 2(AU+ BV+ CW− DZ− au− bv− cw+ dz)x5 (30)

x′5 = 2(Cv+ Az− Bw+ Du+ aZ− bW+ cV + dU)x1

+ 2(Aw+ Bz− Cu+ Dv + aW+ bZ− cU + dV)x2

+ 2(Bu− Av+ Cz+ Dw − aV + bU + cZ+ dW)x3

+ 2(DZ− AU− BV− CW− au− bv− cw+ dz)x4
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+ (A2+ B2+ C2+ D2+ a2+ b2+ c2+ d2

−U2− V2−W2− Z2− u2− v2− w2− z2)x5 (31)

The parametersA, B, C, D are real, the parametersa, b, c, d are imaginary, and
each of the two tetradsU , V , W, Z andu, v, w, z is either real or imaginary,
according to Eqs. (25) and (26).

The five-dimensional rotations can be written in the matrix form

x′m = Am xm (32)

The respective cracovian form is

x′c = xc·TAc = xc·Pc (33)

The column matricesx′m andxm in Eq. (32) are identical with the column cracovians
x′c andxc in Eq. (33), whereT denotes the “transpose” cracovian, and the square
matrixAm in Eq. (32) is identical with the square cracovianAc in Eq. (33). The
lower indices m and c distinguish square or column tables undergoing the matrix
product from those undergoing the cracovian product. The cracovianPc may, for
brevity, be called a quasi-rotation cracovian, since it represents the nonassociative
transformations connected with the five-dimensional rotations. The elements of
the cracovianPc are defined in Eqs. (32) and (33).

4. DOUBLE-VALUED CRACOVIAN REPRESENTATIONS
OF THE QUASI-ROTATIONS

We will determine double-valued, eight-dimensional cracovian irreps of the
quasi-rotationsPc connected with theSO(3, 2) andSO(4, 1) groups. The method
of calculation is analogous to that applied in the determination of a double-valued
cracovian irrep of the quasi-rotations connected with the proper orhochronous
Lorentz group (Koci´nski, 2001). We firstly consider the nonassociative sedenion
group. Theγ -symbols in the dot product on the left-hand side of Eq. (5) will
be written with a caret, which means that (γµν···σ ) · (γεη···ρ) will be replaced by
(γ̂µν···σ ) · (γ̂εη···ρ). The respective nonassociative Clifford algebra has the basis
consisting of the right identityτ , the generators ˆγµ, µ = 1, . . . , 4, fulfilling the
conditionγ̂µ · γ̂ν + γ̂ν · γ̂µ = −2τδµν , µ, ν = 1, 2, 3, 4, and all linearly indepen-
dent products of these generators. The dimension of this algebra is 2N (Kociński,
2001). The Cayley table of the nonassociative sedenion group is given in
Table I.

The nonassociative sedenion group has a four-dimensional cracovian irrep
which is identical with the respective matrix irrep of the sedenion group. It also



P1: GVM

International Journal of Theoretical Physics [ijtp] pp345-ijtp-364906 January 24, 2002 14:44 Style file version Nov. 19th, 1999

De Sitter Quasigroups 239

Table I. Multiplication Table of the Nonassociative Sedenion Groupa

τ 23 31 12 14 24 34 5 15 25 35 45 1 2 3 4
τ τ 32 13 21 41 42 43 5 15 25 35 45−1 −2 −3 −4

23 23 τ 21 31 −5 43 24 41 −4 35 −25 1 45 −3 2 −15
31 31 12 τ 32 34 −5 41 42 −35 −4 15 2 3 45 −1 −25
12 12 13 23 τ 42 14 −5 43 25 −15 −4 3 −2 1 45 −35
14 14 −5 43 24 τ 21 31 32 45 −3 2 −15 −4 35 −25 1
24 24 34 −5 41 12 τ 32 13 3 45 −1 −25 −35 −4 15 2
34 34 42 14 −5 13 23 τ 21 −2 1 45 −35 25 −15 −4 3
5 5 14 24 34 23 31 12 τ 1 2 3 4 −15 −25 −35 −45

15 15 4 −35 25 45 −3 2 −1 −τ 12 13 14 −5 43 24 32
25 25 35 4 −15 3 45 −1 −2 21 −τ 23 24 34 −5 41 13
35 35 −25 15 4 −2 1 45 −3 31 32 −τ 34 42 14 −5 21
45 45 −1 −2 −3 −15 −25 −35 −4 41 42 43 −τ 23 31 12 −5
1 1 45 −3 2 4 −35 25 −15 −5 43 24 32 −τ 12 13 14
2 2 3 45 −1 35 4 −15 −25 34 −5 41 13 21 −τ 23 24
3 3 −2 1 45 −25 15 4 −35 42 14 −5 21 31 32 −τ 34
4 4 −15 −25 −35 −1 −2 −3 −45 23 31 12 −5 41 42 43 −τ

a
Hereτ denotes the right unit element and numbers denote the indices of the respective ˆγ -symbols.
We have ˆγµν = −γ̂νµ, µ 6= ν, µ, ν = 1, 2, 3, 4; and ˆγµ5 = γ̂5µ, µ = 1, 2, 3, 4.

has, however, an eight-dimensional cracovian irrep of the form

γ̂23 =



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0


γ̂31 =



0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 01 0 0


(34)

γ̂12 =



0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 −10
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0


γ̂14 =



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0


(35)
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γ̂24 =



0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0


γ̂34 =



0 0 01 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0


(36)

γ̂5 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0−1


γ̂15 =



0 0 0 0 0 0 0 −i
0 0 0 0 0 0 −i 0
0 0 0 0 0 −i 0 0
0 0 0 0 −i 0 0 0
0 0 0 −i 0 0 0 0
0 0 −i 0 0 0 0 0
0 −i 0 0 0 0 0 0
−i 0 0 0 0 0 0 0


(37)

γ̂25 =



0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 −i
i 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0
0 0i 0 0 0 0 0
0 0 0 −i 0 0 0 0


γ̂35 =



0 0 0 0 0 i 0 0
0 0 0 0 i 0 0 0
0 0 0 0 0 0 0 −i
0 0 0 0 0 0 −i 0
0 i 0 0 0 0 0 0
i 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 −i 0 0 0 0 0


(38)

γ̂45 =



0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 i
0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0i 0 0 0 0 0
0 0 0 −i 0 0 0 0
−i 0 0 0 0 0 0 0

0 i 0 0 0 0 0 0


γ̂1 =



0 0 0 0 0 0 0 −i
0 0 0 0 0 0 −i 0
0 0 0 0 0 −i 0 0
0 0 0 0 −i 0 0 0
0 0 0i 0 0 0 0
0 0 i 0 0 0 0 0
0 i 0 0 0 0 0 0
i 0 0 0 0 0 0 0


(39)
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γ̂2 =



0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0i 0
0 0 0 0 0 0 0 −i
−i 0 0 0 0 0 0 0

0 i 0 0 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 i 0 0 0 0


γ̂3 =



0 0 0 0 0 i 0 0
0 0 0 0 i 0 0 0
0 0 0 0 0 0 0 −i
0 0 0 0 0 0 −i 0
0 −i 0 0 0 0 0 0
−i 0 0 0 0 0 0 0

0 0 0 i 0 0 0 0
0 0 i 0 0 0 0 0


(40)

γ̂4 =



0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0i
0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 −i 0 0 0 0 0
0 0 0 i 0 0 0 0
i 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0


(41)

Here and in the following we use wavy brackets for cracovian tables to distinguish
them from matrix tables.

It suffices to prove the irreducibility of this cracovian representation into
two four-dimensional cracovian representations. If it is reducible then only to this
form, since the four-dimensional cracovian representation of the nonassociative
biquaternion subgroup of the nonassociative sedenion group has already been
proved to be irreducible (Koci´nski, 2001).

Firstly, we observe that the condition that any similarity transformationS
of a cracovian representation has to preserve the Cayley table of the respective
nonassociative groupG′, namely

(S· T A· S−1) · (S· T B · S−1) = S· T(A · B) · S−1 (42)

for any A and B belonging to the nonassociative groupG′, leads to the two
conditions

S· B · S−1 = S−1 · B · S and S· T B · S−1 = S−1 · T B · S (43)

for any cracovianB belonging to the nonassociative groupG′, from which follows
that

S−1 = S (44)

for any cracovian similarity transformationSwhich preserves the Cayley table.
Secondly, we observe that from the definition of the nonassociative pro-

duct in Eq. (5) it follows that every matrix representation of a group at the same
time is a cracovian representation of the respective nonassociative group and vice
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versa. A matrix irrep turns into a cracovian irrep; however, a cracovian irrep
can turn into a reducible matrix representation. An example of such a situation
was given (Koci´nski, 2001). If the eight-dimensional cracovian representation
Q16 were reducible to two four-dimensional representations, the respective two
diagonal blocks would at the same time belong to a matrix representation of the
sedenion group. The sedenion group has only one four-dimensional matrix irrep.
A further transformation of the block-diagonal form of the cracoviansQ16 then
would turn the blocks into a particular standard form of the four-dimensional
matrix representation. WithSdenoting the resultant similarity transformation we
therefore can write

S· T C(γ̂ν) · S= C′(γ̂ν) (45)

where C(γ̂ν) denotes the original eight-dimensional cracovian andC′(γ̂ν) the
block-diagonal cracovian, whose four-dimensional table is identical with the
matrix table representingγν in the chosen matrix representation of the sedenion
group. Assume that the four-dimensional matrix irrep of the sedenion group is that
in Flügge (1964) or Gross (1993). It then can be shown that a similarity transfor-
mationS fulfilling Eq. (45) does not exist. This means that the eight-dimensional
cracovian representationQ16 is irreducible.

We can now determine a double-valued, eight-dimensional cracovian irrep
of each of the nonassociative groups of quasi-rotationsPc in Eq. (33), in (3+ 2)-
and (4+ 1)-dimensional pseudo-orthogonal spaces.

In (3+ 2) dimensions we introduce the nonassociative sedenion transforma-
tion

Q(3, 2)= Aγ̂23+ Bγ̂31+ Cγ̂12+ Dτ + aγ̂14+ bγ̂24+ cγ̂34+ dγ̂5

− iuγ̂15− iv γ̂25− iw γ̂35+ Zγ̂45+U γ̂1+ V γ̂2+Wγ̂3− i zγ̂4

(46)

where, for convenience, the parametersu, v, w, z as well as the parametersU , V ,
W, Z now are real. This means that we have replaced the imaginary parametersu,
v,w, z in Eq. (26) byiu, iv, iw , i z, respectively, with realu,v,w, z. The parameters
A, B, C, D are real and the parametersa, b, c, d are imaginary according to their
primary definition in Eq. (10).

In (4+ 1) dimensions, shiftingi in Eq. (46) fromu, v, w, z to U , V , W, Z,
and at the same time reversing the signs ofu, v, w, z, U , V , W, Z, we obtain from
Eq. (46) the following transformation:

Q(4, 1)= Aγ̂23+ Bγ̂31+ Cγ̂12+ Dτ + aγ̂14+ bγ̂24+ cγ̂34+ dγ̂5

+ uγ̂15+ vγ̂25+ wγ̂35− i Z γ̂45− iU γ̂1− iV γ̂2− iWγ̂3+ zγ̂4

(47)
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Introducing for the ˆγνµ andγ̂ν the cracovian irrepQ16 in Eqs. (34)–(41) we
obtain the respective cracovian forms of these nonassociative transformations.

In (3+ 2) dimensions we have

Q(3, 2)

=



(D + d) (A+ a) −(B+ b) (C + c) (iV + v) (iW + w) −(i Z + z) −(iU + u)

−(A+ a) (D + d) −(C + c) −(B+ b) (iW + w) −(iV + v) −(iU + u) (i Z + z)

(B+ b) (C + c) (D + d) −(A+ a) (i Z + z) −(iU + u) (iV + v) −(iW + w)

−(C + c) (B+ b) (A+ a) (D + d) −(iU + u) −(i Z + z) −(iW + w) −(iV + v)

−(iV − v) −(iW − w) (i Z − z) (iU − u) (D − d) (A− a) −(B− b) (C − c)

−(iW − w) (iV − v) (iU − u) −(i Z − z) −(A− a) (D − d) −(C − c) −(B− b)

−(i Z − z) (iU − u) −(iV − v) (iW − w) (B− b) (C − c) (D − d) −(A− a)

(iU − u) (i Z − z) (iW − w) (iV − v) −(C − c) (B− b) (A− a) (D − d)


(48)

with the inverse cracovianQ−1(3, 2) in the form

Q−1(3, 2)

=



(D + d) (A+ a) −(B+ b) (C + c) −(iV + v) −(iW + w) (i Z + z) (iU + u)

−(A+ a) (D + d) −(C + c) −(B+ b) −(iW + w) (iV + v) (iU + u) −(i Z + z)

(B+ b) (C + c) (D + d) −(A+ a) −(i Z + z) (iU + u) −(iV + v) (iW + w)

−(C + c) (B+ b) (A+ a) (D + d) (iU + u) (i Z + z) (iW + w) (iV + v)

(iV − v) (iW − w) −(i Z − z) −(iU − u) (D − d) (A− a) −(B− b) (C − c)

(iW − w) −(iV − v) −(iU − u) (i Z − z) −(A− a) (D − d) −(C − c) −(B− b)

(i Z − z) −(iU − u) (iV − v) −(iW − w) (B− b) (C − c) (D − d) −(A− a)

−(iU − u) −(i Z − z) −(iW − w) −(iV − v) −(C − c) (B− b) (A− a) (D − d)


(49)

In (4 + 1) dimensions, shiftingi in Eq. (48) fromU , V , V , Z to u, v, w, z,
respectively, we obtain the cracovian

Q(4, 1)

=



(D + d) (A+ a) −(B+ b) (C + c) (V + iv) (W + iw) −(Z + i z) −(U + iu)

−(A+ a) (D + d) −(C + c) −(B+ b) (W + iw) −(V + iv) −(U + iu) (Z + i z)

(B+ b) (C + c) (D + d) −(A+ a) (Z + i z) −(U + iu) (V + iv) −(W + iw)

−(C + c) (B+ b) (A+ a) (D + d) −(U + iu) −(Z + i z) −(W + iw) −(V + iv)

−(V − iv) −(W − iw) (Z − i z) (U − iu) (D − d) (A− a) −(B− b) (C − c)

−(W − iw) (V − iv) (U − iu) −(Z − i z) −(A− a) (D − d) −(C − c) −(B− b)

−(Z − i z) (U − iu) −(V − iv) (W − iw) (B− b) (C − c) (D − d) −(A− a)

(U − iu) (Z − i z) (W − iw) (V − iv) −(C − c) (B− b) (A− a) (D − d)


(50)
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whereu, v, w, z, U , V , W, Z are real. Shiftingi from U , V , W, Z to u, v, w, z,
respectively, in the cracovianQ−1(3, 2) in Eq. (49), we obtain the inverse cracovian
Q−1(4, 1). We observe that the cracovianQ−1(3, 2) is the inverse of the cracovian
Q(3, 2) when the conditions in Eqs. (18)–(23) are applied. The same holds for the
cracoviansQ−1(4, 1) andQ(4, 1).

We will now show that the cracoviansQ(3, 2) andQ(4, 1) yield double-valued
representations of the nonassociative groups of transformationsPc defined in
Eq. (33), connected with the respective groups of rotationsSO(3, 2) andSO(4, 1).

We begin with rewriting the column cracovianxc in Eq. (33) in a square
cracovian form, to be denoted byXc. To this end we write

Xc = x1γ̂23+ x2γ̂31+ x3γ̂12+ x4γ̂5+ x5γ̂4 (51)

and replace the ˆγ ’s by the respective cracovians in Eqs. (34)–(41), thus obtaining
the eight-dimensional cracovian

Xc =



x4 x1 −x2 x3 0 0 i x5 0
−x1 x4 −x3 −x2 0 0 0 −i x5

x2 x3 x4 −x1 −i x5 0 0 0
−x3 x2 x1 x4 0 i x5 0 0

0 0 i x5 0 −x4 x1 −x2 x3

0 0 0 −i x5 −x1 −x4 −x3 −x2

−i x5 0 0 0 x2 x3 −x4 −x1

0 i x5 0 0 −x3 x2 x1 −x4


= (Exc, Eqc) (52)

where (Exc, Eqc) denotes a scalar product ofExc andEqc = (γ̂23, γ̂31, γ̂12, γ̂5, γ̂4).
We now consider the nonassociative transformation

Q · (T Xc) · Q∗ = X′c = (Ex′c, Eqc) (53)

where Q stands for the cracoviansQ(3, 2) or Q(4, 1) in Eqs. (48) and (50),
respectively, and where∗ denotes the conjugate complex operation. It can be
verified that the coordinatesx′1, x′2, x′3, x′4, x′5 calculated from Eq. (53) are those
calculated from Eq. (33). The elements of the cracovianPc are equal to the elements
of the transposed tableAc which is identical with the matrix tableAm in Eq. (32).
Consequently, the first index of the elementajk of the matrixAm is the column
index of the cracovian tablePc. This means that the transformation in Eq. (33)
which carriesxc into x′c = xc · Pc can also be determined from Eq. (53).

We observe that in establishing this we made use of the following property of
the six conditions for the Cayley–Klein parameters in Eqs. (18)–(23). These equa-
tions serve for the determination of the 6 nonrotational parametersD, d, U , V ,
W, z in terms of the 10 rotational parametersA, B, C, a, b, c, u, v, w, Z. It can be
shown that the expressions for the nonrotational parameters are polynomes of the
second degree in the rotational parameters. Consequently, these expressions are in-
dependent of the simultaneous change of sign of all the rotational parameters. This
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means that the six conditions can be applied with the same result, independently
of the reversal of sign of all the rotational parameters appearing in them.

It can be demonstrated that to the productQ1 · Q2 of two transformations
of the typeQ(3, 2) or Q(4, 1) corresponds the product of the respective quasi-
rotationsPc(Q1) · Pc(Q2) = Pc(Q1 · Q2). The proof is analogous to that in the case
of quasi-rotations in the Minkowski space (Koci´nski, 2001). There exists a two-
to-one homomorphism between the nonassociative groups of eight-dimensional
cracovians in Eqs. (48) and (50) and the respective nonassociative groups of quasi-
rotationsPc in Eq. (33).

5. THE COVARIANCE OF THE DIRAC EQUATION

Dirac’s electron-wave equation (Dirac, 1935) in de Sitter space was investi-
gated in a number of papers. We only name the work of G¨ursey and Lee (1963) and
the recent survey article of Halpern (2001). Dirac’s paper contains also an alterna-
tive form of his electron-wave equation in Minkowski space. This form served as
a basis for constructing a five-dimensional electron-wave equation in (4+ 1)- or
(3+ 2)-dimensional, pseudo-orthogonal space (Koci´nski, 1999, 2000). The five-
dimensional equation is given by

[γµ(∂µ − iaµ)− i γ5κ]u = 0 (54)

with aµ = (e/hc)Aµ, µ = 1, 2, 3, 4, anda5 = mχ/hcor a5 = imχ/hc for x5 real
or x5 imaginary, respectively, withχ denoting a real nonelectromagnetic scalar
potential, whileκ = mc/h. When Eq. (54) is delimited to the Minkowski space
(µ = 1, 2, 3, 4), it represents the alternative form of the Dirac equation (Dirac,
1935).

A solutionu of Eq. (54) can be referred to the basis of the sedenion algebra
without applying a matrix representation for the algebra generators (Sommerfeld,
1944). It then has the form

u = c0(Ex)+ γ1c1(Ex)+ · · · + γ1γ2γ3γ4c15(Ex) (55)

wherec0(Ex), . . . , c15(Ex) are complex functions of a four-vectorEx = (x1, x2, x3,
x4) in the Minkowski subspace, or of a five-vectorEx = (x1, x2, x3, x4, x5) in the
two considered five-dimensional spaces.

The covariance of Eq. (54) with respect to rotations belonging to theSO
(4, 1) andSO(3, 2) groups was demonstrated in Koci´nski (1999, 2000). To this
end Eq. (54) was rewritten in the form

γµDµu = 0 (56)

withDµ = ∂µ − iÄµ orDµ = pµ − iaµ whenx5 is real or imaginary, respectively,
whereÄµ = aµ,µ = 1, . . . , 4, andÄ5 = a5+ κ for x5 real, and wherepµ = ∂µ,
µ = 1, . . . , 4, andp5 = ∂5− i κ for x5 imaginary.
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We will now show that the five-dimensional form of the Dirac equation in
Eq. (54) or in Eq. (56) is covariant with respect to the quasi-rotations of the
quasigroups connected with the groupsSO(4, 1) andSO(3, 2). To this end we
rewrite Eq. (56) in the basis of the nonassociative Clifford algebra (Koci´nski,
2001). It then acquires the form

û · [(τ γ̂µ)Dµ] = 0 (57)

where û is obtained fromu in Eq. (55) by replacingγµ with γ̂µ and c0(Ex) by
τc0(Ex), and where to avoid unnecessary brackets the dot betweenτ and the symbol
to the right of it has been omitted (Koci´nski, 2001). This means that in Eq. (57),
(τ · γ̂µ) has been replaced by (τ γ̂µ), andτ · γ̂5 has been replaced byτ γ̂5. In the
rotated coordinate system we are dealing with the “primed” quantities: (i)û′(Ex′) =
û(Ex) · τ V̂ , where againτ V̂ stands for (τ · V̂), and (ii)D′µ. The transformation̂V
depends on the 16 basis elements of the nonassociative Clifford algebra and on the
parameters of the quasi-rotationPc in Eq. (33). In the rotated coordinate system
we thus obtain the equation

(û · τ V̂) · [(τ γ̂ν)D′ν ] = 0 (58)

where again (̂u · τ V̂) replaces [̂u · (τ · V̂)]. Multiplying this equation from the right
by V̂−1 we obtain

(û · τ V̂) · [(τ γ̂ν)D′ν ] · V̂−1 = 0 (59)

By a repeated application of Eq. (6) and of the equalityτ (â · b̂) = b̂ · â, which is
valid for any two elementŝa andb̂ of the nonassociative group algebra (Koci´nski,
2001), this equation is transformed to the form

û · {V̂−1 · [γ̂νD′ν ] · V̂} = 0 (60)

We now return to Eq. (57) and express in itDµ throughD′ν , utilizing the cracovian
formula

Dµ = D′ν
(
A−1

c

)
µν

(61)

with the transformationAc defined in Eq. (33), thus obtaining the equation

û ·{(τ γ̂µ)D′ν
(
A−1

c

)
µν

} = 0 (62)

The comparison of Eqs. (60) and (62) yields the covariance condition

(V̂−1 · γ̂ν) · V̂ =
∑
µ

(τ γ̂µ)
(
A−1

c

)
µν

(63)

Utilizing on the left-hand side the relationABC=C · T B · T Abetween the matrix
product and the cracovian product of the three tablesA, B, andC (Kociński, 2001),
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and on the right-hand side the equalityA−1
c = Am, which is valid for the pseudo-

orthogonal rotationsAm, we can verify that Eq. (63) transforms to the customary
matrix covariance condition.

6. A HIDDEN SYMMETRY OF THE DIRAC EQUATION

Weyl (1952) introduced the notion of a “hidden” symmetry group of an object.
He considered a set with a symmetry groupG. This can be the set of all roots of
a polynom, the set of space-time points or of all nods of a crystal lattice. He
showed that essential features of a set endowed with structure can be determined
by studying the group of all automorphismsAut G of this set which preserve all
its structural relations. The groupG determines the “obvious” symmetry and the
groupAut G, the “hidden” symmetry of the set. The concept of a hidden symmetry
group was discussed from the standpoint of group actions on sets by Floreket al.
(1988) and Luleket al. (1995).

In one of the examples discussed by Weyl (1952), the object is a regular
septadecagon. The property under consideration is the possibility of construction
of that regular septadecagon with the help of a compass and a ruler. The symmetry
groupG of the set of vertices of a regular septadecagon is the cyclic groupC17.
This is the obvious geometric symmetry group of the regular septadecagon. The
vertices of a regular septadecagon are determined by the roots of the equation
z17− 1= 0, withz= x + iy. One of the roots isz= 1, and the remaining 16 roots
are determined by an algebraic equation of degree 16. The rootz= 1 determines
the starting vertex in the construction of a regular septadecagon. The determination
of the positions of the remaining 16 vertices is shown to be connected with the
group of permutations of the 16 roots of the algebraic equation of the degree 16.
This appears to be the cyclic groupC16; henceAut C17 = C16. This is the hidden
symmetry group of a regular septadecagon. The possibility of construction of
a regular septadecagon with the help of a compass and a ruler hinges on the
groupC16.

In our case the object is the Dirac equation. The de Sitter groupsSO(4, 1) and
SO(3, 2), or their subgroup, i.e. the proper orthochronous Lorentz group, are the
obviousgeometric symmetry groups of that equation in a five-dimensional space
or in Minkowski space, respectively. This equation is referred to the generators of
the sedenion algebra and its solutions (cf. Eq. (55)) to the basis of that algebra.
Weyl’s set endowed with a structure now is constituted by the basis elements of the
sedenion algebra. The structural condition for the algebra generators is given in
Eq. (1). This structural condition is preserved by the two groups of automorphisms
in Eqs. (2) and (3). A solutionu in Eq. (55) of the Dirac equation is covariant with
respect to the two groups of automorphisms in Eqs. (2) and (3). In turn the Dirac
equation is invariant under these automorphisms, since the four (or five, whenγ5

is introduced), mutually anticommutingγµ’s which appear in it obey the defining
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condition in Eq. (1) in their original forms as well as after the transformations in
Eqs. (2) and (3). We notice that the two groups of automorphisms in Eqs. (2) and
(3) correspond to the group automorphismAut C17 = C16 in the case of a regular
septadecagon. These, however, do not determine by themselves a hidden symmetry
of the Dirac equation. Further steps are required for disclosing a possible hidden
symmetry. Firstly, on the basis of those groups of automorphisms, we have to define
the nonassociative product in Eq. (5) and next to determine the nonassociative
group of quasi-rotationsPc in Eq. (33). We have shown that the Dirac equation is
covariant with respect to those quasi-rotations, and it seems that the nonassociative
group of quasi-rotationsPc may, perhaps, be recognized as a hidden symmetry of
the Dirac equation.

Let us suppose that the analogy holds between Weyl’s hidden symmetry group
and the symmetry of the Dirac equation with respect to the nonassociative group
Pc. We could then expect that some as yet undisclosed properties of the Dirac
equation might follow from that hidden symmetry. It seems that the double-valued
cracovian irrepsQ(4, 1) or Q(3, 2) of the respective nonassociative groups of
quasi-rotations could be examined in this respect.

7. CONCLUSIONS

Continuing the investigations of Sommerfeld (1944) and of G¨ursey (1964) we
have determined the Cayley–Klein parameters for the de Sitter groups and also the
four-dimensional, double-valued irreps of those groups. These irreps represent an
analogue of theSL(2, C) double-valued irrep of the proper orthochronous Lorentz
group. These results serve as a basis of the second part of this paper, which is an
extension of the investigations of quasigroups connected with the quasi-rotations
in the Minkowski space (Koci´nski, 2001). We have determined the quasi-rotations
nonassociative groups connected with the de Sitter groupsSO(4, 1) andSO(3, 2).
A particular type of a quasigroup connected with the sedenion group was deter-
mined. This served as a basis for determining double-valued, eight-dimensional
cracovian irreps for those quasigroups. In the Minkowski subspace of the (3+ 2)-
or (4+ 1)-dimensional, pseudo-orthogonal spaces, the double-valued cracovian
irreps reduce to the double-valued cracovian irrep for the quasi-rotations con-
nected with the proper orthochronous Lorentz group (Koci´nski, 2001). A possible
application in physics of the quasigroups investigated here may, perhaps, be sought
with the reference to the Dirac equation or to its five-dimensional form (Koci´nski,
1999, 2000). The covariance of the Dirac equation with respect to the nonas-
sociative group of quasi-rotations connected with proper orthochronous Lorentz
group, or of its five-dimensional form with respect the the nonassociative groups of
quasi-rotations connected with the de Sitter groups was demonstrated. An analogy
has been drawn between a quasigroup connected with a group and Weyl’s hidden
symmetry group connected with the obvious symmetry group of an object. If the
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object is the Dirac equation with its obvious symmetry determined by the proper
orthochronous Lorentz group, or theSO(4, 1) andSO(3, 2) groups in the case of its
five-dimensional extension, the respective nonassociative groups of quasi-rotations
may be the analogues of hidden symmetry groups. They may determine a hidden
symmetry of the Dirac equation. The property or properties under consideration
which depend on this hidden symmetry of the Dirac equation could be, perhaps,
some hitherto undisclosed, latent dynamical consequences, connected with the
double-valued cracovian irreps of the nonassociative groups of quasi-rotations.
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